探索TorchRec的分片¶
Created On: May 10, 2022 | Last Updated: May 13, 2022 | Last Verified: Nov 05, 2024
本教程将主要介绍通过``EmbeddingPlanner``和``DistributedModelParallel``API对嵌入表进行分片方案,并通过明确配置它们探索不同分片方案对嵌入表的优势。
安装¶
要求: - python >= 3.7
我们强烈推荐在使用torchRec时使用CUDA。如果使用CUDA: - cuda >= 11.0
# install conda to make installying pytorch with cudatoolkit 11.3 easier.
!sudo rm Miniconda3-py37_4.9.2-Linux-x86_64.sh Miniconda3-py37_4.9.2-Linux-x86_64.sh.*
!sudo wget https://repo.anaconda.com/miniconda/Miniconda3-py37_4.9.2-Linux-x86_64.sh
!sudo chmod +x Miniconda3-py37_4.9.2-Linux-x86_64.sh
!sudo bash ./Miniconda3-py37_4.9.2-Linux-x86_64.sh -b -f -p /usr/local
# install pytorch with cudatoolkit 11.3
!sudo conda install pytorch cudatoolkit=11.3 -c pytorch-nightly -y
安装torchRec时也会安装`FBGEMM <https://github.com/pytorch/fbgemm>`__,这是一个包含CUDA内核和支持GPU的操作的集合
# install torchrec
!pip3 install torchrec-nightly
安装multiprocess,它可以与ipython一起用于Colab中的多进程编程
!pip3 install multiprocess
以下步骤是让Colab运行时检测到添加的共享库所需的。运行时会在/usr/lib中搜索共享库,因此我们将已安装在/usr/local/lib/中的库复制到/usr/lib中。 这在Colab运行时中是非常必要的步骤。
!sudo cp /usr/local/lib/lib* /usr/lib/
此时重新启动运行时以使新安装的包可见。 在重启后立即运行以下步骤,让python知道在哪里寻找包。 每次在重启运行时后都要运行此步骤。
import sys
sys.path = ['', '/env/python', '/usr/local/lib/python37.zip', '/usr/local/lib/python3.7', '/usr/local/lib/python3.7/lib-dynload', '/usr/local/lib/python3.7/site-packages', './.local/lib/python3.7/site-packages']
分布式设置¶
由于笔记本环境,我们无法在此运行 SPMD 程序,但我们可以在笔记本中进行多进程编程以模拟设置。在使用Torchrec时,用户应负责设置自己的`SPMD <https://en.wikipedia.org/wiki/SPMD>`_启动器。我们设置了环境,使得Torch的分布式通信后端能够正常工作。
import os
import torch
import torchrec
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "29500"
构建我们的嵌入模型¶
这里我们使用TorchRec提供的`EmbeddingBagCollection <https://github.com/facebookresearch/torchrec/blob/main/torchrec/modules/embedding_modules.py#L59>`_构建带有嵌入表的嵌入包模型。
我们在这里创建了一个具有四个嵌入包的EmbeddingBagCollection (EBC)。我们有两种类型的表:大表和小表,它们通过行大小的差异来区分:4096 vs 1024。每张表仍然由64维嵌入表示。
我们为表配置了``ParameterConstraints``数据结构,它为模型并行API提供提示,以帮助决定表的分片和放置策略。在TorchRec中,我们支持* 表级
: 将整个表放置在一个设备上;* 行级
: 按行维度均匀分片表,并将每个分片放置在通信域的一个设备上;* 列级
: 按嵌入维度均匀分片表,并将每个分片放置在通信域的一个设备上;* 表行级
: 优化用于主机内通信的特殊分片,以利用可用的快速机器内设备互连,例如NVLink;* 数据并行
: 每个设备复制表;
请注意我们最初如何在设备”meta”上分配EBC。这将告诉EBC暂时不分配内存。
from torchrec.distributed.planner.types import ParameterConstraints
from torchrec.distributed.embedding_types import EmbeddingComputeKernel
from torchrec.distributed.types import ShardingType
from typing import Dict
large_table_cnt = 2
small_table_cnt = 2
large_tables=[
torchrec.EmbeddingBagConfig(
name="large_table_" + str(i),
embedding_dim=64,
num_embeddings=4096,
feature_names=["large_table_feature_" + str(i)],
pooling=torchrec.PoolingType.SUM,
) for i in range(large_table_cnt)
]
small_tables=[
torchrec.EmbeddingBagConfig(
name="small_table_" + str(i),
embedding_dim=64,
num_embeddings=1024,
feature_names=["small_table_feature_" + str(i)],
pooling=torchrec.PoolingType.SUM,
) for i in range(small_table_cnt)
]
def gen_constraints(sharding_type: ShardingType = ShardingType.TABLE_WISE) -> Dict[str, ParameterConstraints]:
large_table_constraints = {
"large_table_" + str(i): ParameterConstraints(
sharding_types=[sharding_type.value],
) for i in range(large_table_cnt)
}
small_table_constraints = {
"small_table_" + str(i): ParameterConstraints(
sharding_types=[sharding_type.value],
) for i in range(small_table_cnt)
}
constraints = {**large_table_constraints, **small_table_constraints}
return constraints
ebc = torchrec.EmbeddingBagCollection(
device="cuda",
tables=large_tables + small_tables
)
进程内分布式模型并行¶
现在,我们有一个单进程执行函数,用于模拟`SPMD <https://en.wikipedia.org/wiki/SPMD>`_执行期间一个rank的工作。
此代码将与其他进程共同分片模型并相应地分配内存。它首先设置进程组并使用规划器进行嵌入表放置,然后使用``DistributedModelParallel``生成分片模型。
def single_rank_execution(
rank: int,
world_size: int,
constraints: Dict[str, ParameterConstraints],
module: torch.nn.Module,
backend: str,
) -> None:
import os
import torch
import torch.distributed as dist
from torchrec.distributed.embeddingbag import EmbeddingBagCollectionSharder
from torchrec.distributed.model_parallel import DistributedModelParallel
from torchrec.distributed.planner import EmbeddingShardingPlanner, Topology
from torchrec.distributed.types import ModuleSharder, ShardingEnv
from typing import cast
def init_distributed_single_host(
rank: int,
world_size: int,
backend: str,
# pyre-fixme[11]: Annotation `ProcessGroup` is not defined as a type.
) -> dist.ProcessGroup:
os.environ["RANK"] = f"{rank}"
os.environ["WORLD_SIZE"] = f"{world_size}"
dist.init_process_group(rank=rank, world_size=world_size, backend=backend)
return dist.group.WORLD
if backend == "nccl":
device = torch.device(f"cuda:{rank}")
torch.cuda.set_device(device)
else:
device = torch.device("cpu")
topology = Topology(world_size=world_size, compute_device="cuda")
pg = init_distributed_single_host(rank, world_size, backend)
planner = EmbeddingShardingPlanner(
topology=topology,
constraints=constraints,
)
sharders = [cast(ModuleSharder[torch.nn.Module], EmbeddingBagCollectionSharder())]
plan: ShardingPlan = planner.collective_plan(module, sharders, pg)
sharded_model = DistributedModelParallel(
module,
env=ShardingEnv.from_process_group(pg),
plan=plan,
sharders=sharders,
device=device,
)
print(f"rank:{rank},sharding plan: {plan}")
return sharded_model
多进程执行¶
现在让我们在代表多个GPU排名的多进程中执行代码。
import multiprocess
def spmd_sharing_simulation(
sharding_type: ShardingType = ShardingType.TABLE_WISE,
world_size = 2,
):
ctx = multiprocess.get_context("spawn")
processes = []
for rank in range(world_size):
p = ctx.Process(
target=single_rank_execution,
args=(
rank,
world_size,
gen_constraints(sharding_type),
ebc,
"nccl"
),
)
p.start()
processes.append(p)
for p in processes:
p.join()
assert 0 == p.exitcode
按表分片¶
现在让我们在两个进程中为两个GPU执行代码。我们可以在规划打印中看到表如何在GPU之间分片。每个节点将拥有一个大的表和一个小的表,这表明我们的规划器尝试在设备之间为嵌入表进行负载平衡。按表分片是针对许多中小型表的负载平衡设备的默认分片方案。
spmd_sharing_simulation(ShardingType.TABLE_WISE)
rank:1,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[0], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 64], placement=rank:0/cuda:0)])), 'large_table_1': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 64], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[0], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 64], placement=rank:0/cuda:0)])), 'small_table_1': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 64], placement=rank:1/cuda:1)]))}}
rank:0,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[0], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 64], placement=rank:0/cuda:0)])), 'large_table_1': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 64], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[0], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 64], placement=rank:0/cuda:0)])), 'small_table_1': ParameterSharding(sharding_type='table_wise', compute_kernel='batched_fused', ranks=[1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 64], placement=rank:1/cuda:1)]))}}
探索其他分片模式¶
我们初步探索了按表分片的表现以及如何平衡表的放置。现在我们探索分片模式,并更加专注于负载平衡:按行分片。按行分片专门解决由于嵌入行数增加导致内存不足而无法单设备容纳的大型表。它可以解决模型中超大表的放置问题。用户可以在打印出的规划日志中的``shard_sizes``部分看到,表通过行维度减半并分布到两个GPU上。
spmd_sharing_simulation(ShardingType.ROW_WISE)
rank:1,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[2048, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[2048, 0], shard_sizes=[2048, 64], placement=rank:1/cuda:1)])), 'large_table_1': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[2048, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[2048, 0], shard_sizes=[2048, 64], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[512, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[512, 0], shard_sizes=[512, 64], placement=rank:1/cuda:1)])), 'small_table_1': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[512, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[512, 0], shard_sizes=[512, 64], placement=rank:1/cuda:1)]))}}
rank:0,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[2048, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[2048, 0], shard_sizes=[2048, 64], placement=rank:1/cuda:1)])), 'large_table_1': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[2048, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[2048, 0], shard_sizes=[2048, 64], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[512, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[512, 0], shard_sizes=[512, 64], placement=rank:1/cuda:1)])), 'small_table_1': ParameterSharding(sharding_type='row_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[512, 64], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[512, 0], shard_sizes=[512, 64], placement=rank:1/cuda:1)]))}}
另一方面,按列分片解决了具有大嵌入维度的表的负载不平衡问题。我们将表垂直切分。用户可以在打印出的规划日志中的``shard_sizes``部分看到,表通过嵌入维度减半并分布到两个GPU上。
spmd_sharing_simulation(ShardingType.COLUMN_WISE)
rank:0,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[4096, 32], placement=rank:1/cuda:1)])), 'large_table_1': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[4096, 32], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[1024, 32], placement=rank:1/cuda:1)])), 'small_table_1': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[1024, 32], placement=rank:1/cuda:1)]))}}
rank:1,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[4096, 32], placement=rank:1/cuda:1)])), 'large_table_1': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[4096, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[4096, 32], placement=rank:1/cuda:1)])), 'small_table_0': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[1024, 32], placement=rank:1/cuda:1)])), 'small_table_1': ParameterSharding(sharding_type='column_wise', compute_kernel='batched_fused', ranks=[0, 1], sharding_spec=EnumerableShardingSpec(shards=[ShardMetadata(shard_offsets=[0, 0], shard_sizes=[1024, 32], placement=rank:0/cuda:0), ShardMetadata(shard_offsets=[0, 32], shard_sizes=[1024, 32], placement=rank:1/cuda:1)]))}}
对于``table-row-wise``,由于其在多主机设置下运行的性质,我们无法模拟。我们将在未来呈现一个Python SPMD 示例,用于使用``table-row-wise``训练模型。
使用数据并行时,我们将对所有设备重复表。
spmd_sharing_simulation(ShardingType.DATA_PARALLEL)
rank:0,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'large_table_1': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'small_table_0': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'small_table_1': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None)}}
rank:1,sharding plan: {'': {'large_table_0': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'large_table_1': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'small_table_0': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None), 'small_table_1': ParameterSharding(sharding_type='data_parallel', compute_kernel='batched_dense', ranks=[0, 1], sharding_spec=None)}}