备注
点击 这里 下载完整示例代码
学习基础知识 || 快速入门 || 张量 || 数据集和数据加载器 || 数据转换 || 构建模型 || 自动微分 || 优化 || 保存和加载模型
优化模型参数¶
Created On: Feb 09, 2021 | Last Updated: Apr 28, 2025 | Last Verified: Nov 05, 2024
现在我们有了一个模型和数据,是时候通过优化数据上的参数来训练、验证和测试我们的模型了。训练模型是一个迭代过程;在每次迭代中,模型对输出进行预测,计算预测中的误差(loss),收集误差对其参数的导数(如我们在`上一节 <autograd_tutorial.html>`_ 中看到的),并使用梯度下降**优化**这些参数。有关此过程的详细演示,请参阅 3Blue1Brown 的反向传播视频。
前置代码¶
我们加载上一节关于`数据集和数据加载器 <data_tutorial.html>`_ 和 构建模型 中的代码。
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor()
)
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor()
)
train_dataloader = DataLoader(training_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork()
超参数¶
超参数是可调参数,允许您控制模型优化过程。不同的超参数值可能会影响模型的训练和收敛速度(了解更多 超参数调优信息)。
- 我们为模型训练定义以下超参数:
迭代次数(Epochs) - 数据集迭代的次数
批次大小(Batch Size) - 在更新参数之前通过网络传播的数据样本数量
学习率(Learning Rate) - 每个批次或每次迭代更新模型参数的程度。较小的值会导致学习速度较慢,而较大的值可能导致训练期间行为不可预测。
learning_rate = 1e-3
batch_size = 64
epochs = 5
优化循环¶
一旦设置好超参数,我们就可以通过优化循环来训练和优化模型。优化循环的每次迭代称为**迭代周期(epoch)**。
- 每个迭代周期主要包括两个部分:
训练循环 - 遍历训练数据集并尝试收敛到最佳参数。
验证/测试循环 - 遍历测试数据集以检查模型性能是否在改善。
让我们简要了解训练循环中使用的一些概念。跳到 完整实现代码 以查看优化循环的全貌。
损失函数¶
对一些训练数据进行操作时,我们未训练的网络可能无法给出正确答案。**损失函数**度量获得的结果与目标值的差异程度,我们希望在训练期间最小化损失函数。计算损失时,我们使用给定数据样本的输入进行预测,并将其与真实数据标签的值进行比较。
常见的损失函数包括用于回归任务的`nn.MSELoss <https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html#torch.nn.MSELoss>`_(均方误差),以及用于分类任务的`nn.NLLLoss <https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html#torch.nn.NLLLoss>`_(负对数似然)。nn.CrossEntropyLoss <https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss>`_结合了``nn.LogSoftmax``和``nn.NLLLoss`。
我们将模型输出 logits 传递给``nn.CrossEntropyLoss``,它将对 logits 进行归一化并计算预测误差。
# Initialize the loss function
loss_fn = nn.CrossEntropyLoss()
优化器¶
优化是调整模型参数以减少每个训练步骤中模型误差的过程。**优化算法**定义此过程如何执行(在此示例中我们使用随机梯度下降)。所有优化逻辑都封装在``优化器``对象中。在这里,我们使用 SGD 优化器;此外,PyTorch 中还有许多适合不同模型和数据的 不同优化器,例如 ADAM 和 RMSProp。
我们通过注册模型需要训练的参数并传入学习率超参数来初始化优化器。
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
- 在训练循环中,优化过程分为三个步骤:
调用``optimizer.zero_grad()``来重置模型参数的梯度。梯度默认相加;为了防止重复计算,我们在每次迭代时显式将其归零。
通过调用``loss.backward()``对预测损失进行回传。PyTorch 会记录损失对每个参数的梯度。
获得梯度后,我们调用``optimizer.step()``以根据回传中收集的梯度调整参数。
完整实现¶
我们定义了``train_loop``,它循环运行我们的优化代码,并定义了``test_loop``评估模型对测试数据的性能。
def train_loop(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
# Set the model to training mode - important for batch normalization and dropout layers
# Unnecessary in this situation but added for best practices
model.train()
for batch, (X, y) in enumerate(dataloader):
# Compute prediction and loss
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
loss.backward()
optimizer.step()
optimizer.zero_grad()
if batch % 100 == 0:
loss, current = loss.item(), batch * batch_size + len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test_loop(dataloader, model, loss_fn):
# Set the model to evaluation mode - important for batch normalization and dropout layers
# Unnecessary in this situation but added for best practices
model.eval()
size = len(dataloader.dataset)
num_batches = len(dataloader)
test_loss, correct = 0, 0
# Evaluating the model with torch.no_grad() ensures that no gradients are computed during test mode
# also serves to reduce unnecessary gradient computations and memory usage for tensors with requires_grad=True
with torch.no_grad():
for X, y in dataloader:
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
我们初始化损失函数和优化器,并将它们传递给``train_loop``和``test_loop``。可以自由增加迭代次数以跟踪模型性能的提升。
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
epochs = 10
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train_loop(train_dataloader, model, loss_fn, optimizer)
test_loop(test_dataloader, model, loss_fn)
print("Done!")
Epoch 1
-------------------------------
loss: 2.292459 [ 64/60000]
loss: 2.282062 [ 6464/60000]
loss: 2.258862 [12864/60000]
loss: 2.260096 [19264/60000]
loss: 2.246342 [25664/60000]
loss: 2.206664 [32064/60000]
loss: 2.218828 [38464/60000]
loss: 2.178475 [44864/60000]
loss: 2.177072 [51264/60000]
loss: 2.149036 [57664/60000]
Test Error:
Accuracy: 48.0%, Avg loss: 2.139356
Epoch 2
-------------------------------
loss: 2.140515 [ 64/60000]
loss: 2.130511 [ 6464/60000]
loss: 2.067648 [12864/60000]
loss: 2.100941 [19264/60000]
loss: 2.037529 [25664/60000]
loss: 1.969015 [32064/60000]
loss: 2.007350 [38464/60000]
loss: 1.914824 [44864/60000]
loss: 1.923877 [51264/60000]
loss: 1.857975 [57664/60000]
Test Error:
Accuracy: 57.0%, Avg loss: 1.851141
Epoch 3
-------------------------------
loss: 1.873984 [ 64/60000]
loss: 1.842650 [ 6464/60000]
loss: 1.723311 [12864/60000]
loss: 1.785520 [19264/60000]
loss: 1.664841 [25664/60000]
loss: 1.614804 [32064/60000]
loss: 1.647264 [38464/60000]
loss: 1.542874 [44864/60000]
loss: 1.569961 [51264/60000]
loss: 1.467830 [57664/60000]
Test Error:
Accuracy: 61.6%, Avg loss: 1.488744
Epoch 4
-------------------------------
loss: 1.550377 [ 64/60000]
loss: 1.517442 [ 6464/60000]
loss: 1.369606 [12864/60000]
loss: 1.450250 [19264/60000]
loss: 1.332462 [25664/60000]
loss: 1.324105 [32064/60000]
loss: 1.342681 [38464/60000]
loss: 1.266081 [44864/60000]
loss: 1.299130 [51264/60000]
loss: 1.198077 [57664/60000]
Test Error:
Accuracy: 63.6%, Avg loss: 1.231715
Epoch 5
-------------------------------
loss: 1.303924 [ 64/60000]
loss: 1.289745 [ 6464/60000]
loss: 1.124392 [12864/60000]
loss: 1.233682 [19264/60000]
loss: 1.116129 [25664/60000]
loss: 1.132083 [32064/60000]
loss: 1.157612 [38464/60000]
loss: 1.093704 [44864/60000]
loss: 1.129261 [51264/60000]
loss: 1.041022 [57664/60000]
Test Error:
Accuracy: 64.9%, Avg loss: 1.071958
Epoch 6
-------------------------------
loss: 1.138226 [ 64/60000]
loss: 1.144727 [ 6464/60000]
loss: 0.961123 [12864/60000]
loss: 1.098556 [19264/60000]
loss: 0.984033 [25664/60000]
loss: 1.004115 [32064/60000]
loss: 1.045603 [38464/60000]
loss: 0.985640 [44864/60000]
loss: 1.019496 [51264/60000]
loss: 0.944148 [57664/60000]
Test Error:
Accuracy: 66.0%, Avg loss: 0.969912
Epoch 7
-------------------------------
loss: 1.023501 [ 64/60000]
loss: 1.050937 [ 6464/60000]
loss: 0.850023 [12864/60000]
loss: 1.009491 [19264/60000]
loss: 0.901268 [25664/60000]
loss: 0.915338 [32064/60000]
loss: 0.973985 [38464/60000]
loss: 0.916258 [44864/60000]
loss: 0.944600 [51264/60000]
loss: 0.880063 [57664/60000]
Test Error:
Accuracy: 67.3%, Avg loss: 0.900847
Epoch 8
-------------------------------
loss: 0.939748 [ 64/60000]
loss: 0.985525 [ 6464/60000]
loss: 0.770991 [12864/60000]
loss: 0.946902 [19264/60000]
loss: 0.845967 [25664/60000]
loss: 0.850609 [32064/60000]
loss: 0.924306 [38464/60000]
loss: 0.870372 [44864/60000]
loss: 0.891071 [51264/60000]
loss: 0.834289 [57664/60000]
Test Error:
Accuracy: 68.4%, Avg loss: 0.851275
Epoch 9
-------------------------------
loss: 0.875567 [ 64/60000]
loss: 0.936401 [ 6464/60000]
loss: 0.712619 [12864/60000]
loss: 0.900615 [19264/60000]
loss: 0.806828 [25664/60000]
loss: 0.801964 [32064/60000]
loss: 0.886840 [38464/60000]
loss: 0.838470 [44864/60000]
loss: 0.851029 [51264/60000]
loss: 0.799244 [57664/60000]
Test Error:
Accuracy: 69.5%, Avg loss: 0.813721
Epoch 10
-------------------------------
loss: 0.824102 [ 64/60000]
loss: 0.897031 [ 6464/60000]
loss: 0.667245 [12864/60000]
loss: 0.864776 [19264/60000]
loss: 0.777104 [25664/60000]
loss: 0.764259 [32064/60000]
loss: 0.856542 [38464/60000]
loss: 0.814894 [44864/60000]
loss: 0.819854 [51264/60000]
loss: 0.771090 [57664/60000]
Test Error:
Accuracy: 70.5%, Avg loss: 0.783775
Done!