备注
点击 此处 下载完整示例代码
自动微分的正向模式 (Beta)¶
Created On: Dec 07, 2021 | Last Updated: Apr 18, 2023 | Last Verified: Nov 05, 2024
本教程演示如何使用正向模式 AD 计算方向导数(或同义的雅可比矢量积)。
下面的教程使用的部分 API 仅适用于版本 >= 1.11(或 nightly 版本)。
请注意,正向模式 AD 目前仍处于测试阶段。API 可能会发生变化,并且操作覆盖范围尚不完整。
基本用法¶
与反向模式 AD 不同,正向模式 AD 在前向传播过程中即刻计算梯度。我们可以通过执行前向传播并将输入与另一个表示方向导数方向(或雅可比矢量积中的 v
)的张量相关联,使用正向模式 AD 计算方向导数。当输入(称为“主”或“primal”)与表示方向的张量(称为“切线”或“tangent”)相关联时,生成的新张量对象称为“对偶张量”,它与对偶数有关[0]。
在执行前向传播时,如果任何输入张量是对偶张量,则会进行额外计算以传播函数的这种“敏感性”。
import torch
import torch.autograd.forward_ad as fwAD
primal = torch.randn(10, 10)
tangent = torch.randn(10, 10)
def fn(x, y):
return x ** 2 + y ** 2
# All forward AD computation must be performed in the context of
# a ``dual_level`` context. All dual tensors created in such a context
# will have their tangents destroyed upon exit. This is to ensure that
# if the output or intermediate results of this computation are reused
# in a future forward AD computation, their tangents (which are associated
# with this computation) won't be confused with tangents from the later
# computation.
with fwAD.dual_level():
# To create a dual tensor we associate a tensor, which we call the
# primal with another tensor of the same size, which we call the tangent.
# If the layout of the tangent is different from that of the primal,
# The values of the tangent are copied into a new tensor with the same
# metadata as the primal. Otherwise, the tangent itself is used as-is.
#
# It is also important to note that the dual tensor created by
# ``make_dual`` is a view of the primal.
dual_input = fwAD.make_dual(primal, tangent)
assert fwAD.unpack_dual(dual_input).tangent is tangent
# To demonstrate the case where the copy of the tangent happens,
# we pass in a tangent with a layout different from that of the primal
dual_input_alt = fwAD.make_dual(primal, tangent.T)
assert fwAD.unpack_dual(dual_input_alt).tangent is not tangent
# Tensors that do not have an associated tangent are automatically
# considered to have a zero-filled tangent of the same shape.
plain_tensor = torch.randn(10, 10)
dual_output = fn(dual_input, plain_tensor)
# Unpacking the dual returns a ``namedtuple`` with ``primal`` and ``tangent``
# as attributes
jvp = fwAD.unpack_dual(dual_output).tangent
assert fwAD.unpack_dual(dual_output).tangent is None
与模块一起使用¶
要将正向 AD 与 nn.Module
一起使用,需要在前向传播之前将模型的参数替换为对偶张量。目前无法创建对偶张量的 nn.Parameter。作为一种解决方法,可以将对偶张量注册为模块的非参数属性。
import torch.nn as nn
model = nn.Linear(5, 5)
input = torch.randn(16, 5)
params = {name: p for name, p in model.named_parameters()}
tangents = {name: torch.rand_like(p) for name, p in params.items()}
with fwAD.dual_level():
for name, p in params.items():
delattr(model, name)
setattr(model, name, fwAD.make_dual(p, tangents[name]))
out = model(input)
jvp = fwAD.unpack_dual(out).tangent
使用函数式模块 API(测试阶段)¶
使用正向 AD 的另一个方法是利用函数式模块 API(也称为无状态模块 API)。
from torch.func import functional_call
# We need a fresh module because the functional call requires the
# the model to have parameters registered.
model = nn.Linear(5, 5)
dual_params = {}
with fwAD.dual_level():
for name, p in params.items():
# Using the same ``tangents`` from the above section
dual_params[name] = fwAD.make_dual(p, tangents[name])
out = functional_call(model, dual_params, input)
jvp2 = fwAD.unpack_dual(out).tangent
# Check our results
assert torch.allclose(jvp, jvp2)
自定义自动微分函数¶
自定义函数也支持正向模式 AD。要创建支持正向模式 AD 的自定义函数,需要注册 jvp()
静态方法。自定义函数可以同时支持正向和反向 AD,但这不是强制要求。有关更多信息,请参阅 文档。
class Fn(torch.autograd.Function):
@staticmethod
def forward(ctx, foo):
result = torch.exp(foo)
# Tensors stored in ``ctx`` can be used in the subsequent forward grad
# computation.
ctx.result = result
return result
@staticmethod
def jvp(ctx, gI):
gO = gI * ctx.result
# If the tensor stored in`` ctx`` will not also be used in the backward pass,
# one can manually free it using ``del``
del ctx.result
return gO
fn = Fn.apply
primal = torch.randn(10, 10, dtype=torch.double, requires_grad=True)
tangent = torch.randn(10, 10)
with fwAD.dual_level():
dual_input = fwAD.make_dual(primal, tangent)
dual_output = fn(dual_input)
jvp = fwAD.unpack_dual(dual_output).tangent
# It is important to use ``autograd.gradcheck`` to verify that your
# custom autograd Function computes the gradients correctly. By default,
# ``gradcheck`` only checks the backward-mode (reverse-mode) AD gradients. Specify
# ``check_forward_ad=True`` to also check forward grads. If you did not
# implement the backward formula for your function, you can also tell ``gradcheck``
# to skip the tests that require backward-mode AD by specifying
# ``check_backward_ad=False``, ``check_undefined_grad=False``, and
# ``check_batched_grad=False``.
torch.autograd.gradcheck(Fn.apply, (primal,), check_forward_ad=True,
check_backward_ad=False, check_undefined_grad=False,
check_batched_grad=False)
函数式 API(测试阶段)¶
我们还在 functorch 中提供了更高级别的函数式 API,您可能会发现根据使用场景,这种方法更简单。
函数式 API 的优点是无需了解或使用底层的对偶张量 API,并且可以将其与其他 functorch 转换(例如 vmap) 组合使用;其缺点是提供的控制较少。
请注意,本文余下部分需要 functorch 才能运行(https://github.com/pytorch/functorch)。安装说明请参阅指定链接。
import functorch as ft
primal0 = torch.randn(10, 10)
tangent0 = torch.randn(10, 10)
primal1 = torch.randn(10, 10)
tangent1 = torch.randn(10, 10)
def fn(x, y):
return x ** 2 + y ** 2
# Here is a basic example to compute the JVP of the above function.
# The ``jvp(func, primals, tangents)`` returns ``func(*primals)`` as well as the
# computed Jacobian-vector product (JVP). Each primal must be associated with a tangent of the same shape.
primal_out, tangent_out = ft.jvp(fn, (primal0, primal1), (tangent0, tangent1))
# ``functorch.jvp`` requires every primal to be associated with a tangent.
# If we only want to associate certain inputs to `fn` with tangents,
# then we'll need to create a new function that captures inputs without tangents:
primal = torch.randn(10, 10)
tangent = torch.randn(10, 10)
y = torch.randn(10, 10)
import functools
new_fn = functools.partial(fn, y=y)
primal_out, tangent_out = ft.jvp(new_fn, (primal,), (tangent,))
结合模块使用函数式 API¶
要通过 functorch.jvp
使用 nn.Module
计算关于模型参数的雅可比矢量积,我们需要将 nn.Module
表述为一个接受模型参数和模块输入的函数。
model = nn.Linear(5, 5)
input = torch.randn(16, 5)
tangents = tuple([torch.rand_like(p) for p in model.parameters()])
# Given a ``torch.nn.Module``, ``ft.make_functional_with_buffers`` extracts the state
# (``params`` and buffers) and returns a functional version of the model that
# can be invoked like a function.
# That is, the returned ``func`` can be invoked like
# ``func(params, buffers, input)``.
# ``ft.make_functional_with_buffers`` is analogous to the ``nn.Modules`` stateless API
# that you saw previously and we're working on consolidating the two.
func, params, buffers = ft.make_functional_with_buffers(model)
# Because ``jvp`` requires every input to be associated with a tangent, we need to
# create a new function that, when given the parameters, produces the output
def func_params_only(params):
return func(params, buffers, input)
model_output, jvp_out = ft.jvp(func_params_only, (params,), (tangents,))