Shortcuts

可选:数据并行化

Created On: Nov 14, 2017 | Last Updated: Nov 19, 2018 | Last Verified: Nov 05, 2024

作者Sung KimJenny Kang

在本教程中,我们将学习如何使用 DataParallel 来使用多个 GPU。

使用 PyTorch 时,使用 GPU 非常简单。你可以将模型放在 GPU 上:

然后,你可以将所有的张量复制到 GPU 上:

mytensor = my_tensor.to(device)

请注意,仅调用 my_tensor.to(device) 会返回 my_tensor 在 GPU 上的新副本,而不是重写 my_tensor。你需要将其赋值给一个新张量,并使用该张量在 GPU 上。

在多个 GPU 上执行前向和后向传播是很自然的。然而,PyTorch 默认仅使用一个 GPU。你可以通过使用 DataParallel 让你的模型并行运行来轻松在多个 GPU 上运行操作:

这是本教程的核心。我们将在下面更详细地探讨它。

导入和参数

导入 PyTorch 模块并定义参数。

import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

# Parameters and DataLoaders
input_size = 5
output_size = 2

batch_size = 30
data_size = 100

设备

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

伪数据集

创建一个伪的(随机)数据集。你只需要实现 getitem

class RandomDataset(Dataset):

    def __init__(self, size, length):
        self.len = length
        self.data = torch.randn(length, size)

    def __getitem__(self, index):
        return self.data[index]

    def __len__(self):
        return self.len

rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),
                         batch_size=batch_size, shuffle=True)

简单模型

为了演示,我们的模型仅获取一个输入,执行线性操作后输出结果。不过,你可以在任何模型(如 CNN、RNN、Capsule Net 等)上使用 DataParallel

我们在模型中放置了一个 print 语句,用于监控输入和输出张量的大小。请注意在 batch 维度为 0 时打印的内容。

class Model(nn.Module):
    # Our model

    def __init__(self, input_size, output_size):
        super(Model, self).__init__()
        self.fc = nn.Linear(input_size, output_size)

    def forward(self, input):
        output = self.fc(input)
        print("\tIn Model: input size", input.size(),
              "output size", output.size())

        return output

创建模型和数据并行

这是本教程的核心部分。首先,我们需要创建一个模型实例并检查是否有多个 GPU。如果有多个 GPU,我们可以使用 nn.DataParallel 包装我们的模型。然后我们可以通过 model.to(device) 将模型放在 GPU 上。

model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:
  print("Let's use", torch.cuda.device_count(), "GPUs!")
  # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
  model = nn.DataParallel(model)

model.to(device)
Let's use 8 GPUs!

DataParallel(
  (module): Model(
    (fc): Linear(in_features=5, out_features=2, bias=True)
  )
)

运行模型

现在我们可以看到输入和输出张量的大小。

for data in rand_loader:
    input = data.to(device)
    output = model(input)
    print("Outside: input size", input.size(),
          "output_size", output.size())
/data1/lin/pytorch-tutorials/.venv/lib/python3.10/site-packages/torch/nn/modules/linear.py:125: UserWarning:

Attempting to run cuBLAS, but there was no current CUDA context! Attempting to set the primary context... (Triggered internally at /pytorch/aten/src/ATen/cuda/CublasHandlePool.cpp:181.)

        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
        In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

结果

如果你没有 GPU 或只有一个 GPU,当我们 batch 30 个输入和 30 个输出时,模型会获取 30 并输出预期的 30。但是如果有多个 GPU,你可能会得到像这样的结果。

2 个 GPU

如果有 2 个,你会看到:

# on 2 GPUs
Let's use 2 GPUs!
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
    In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
    In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

3 个 GPU

如果有 3 个 GPU,你会看到:

Let's use 3 GPUs!
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
    In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

8 个 GPU

如果有 8 个,你会看到:

Let's use 8 GPUs!
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
    In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

总结

数据并行会自动分割你的数据,并将工作任务发送到多个 GPU 上的多个模型。每个模型完成其工作后,数据并行会收集并合并结果,然后返回给你。

更多信息请参阅 https://pytorch.org/tutorials/beginner/former_torchies/parallelism_tutorial.html

**脚本总运行时间:**(0 分钟 6.504 秒)

画廊由 Sphinx-Gallery 生成

文档

访问 PyTorch 的详细开发者文档

查看文档

教程

获取针对初学者和高级开发人员的深入教程

查看教程

资源

查找开发资源并获得问题的解答

查看资源