分布式检查点(DCP)入门¶
Created On: Oct 02, 2023 | Last Updated: May 08, 2025 | Last Verified: Nov 05, 2024
作者:Iris Zhang, Rodrigo Kumpera, Chien-Chin Huang, Lucas Pasqualin
先决条件:
在分布式训练期间检查点AI模型可能会很困难,因为参数和梯度在训练器之间分区,而当您恢复训练时可用的训练器数量可能会改变。Pytorch分布式检查点(DCP)可以帮助简化这个过程。
在本教程中,我们展示了如何使用DCP API处理一个简单的FSDP封装模型。
DCP如何工作¶
torch.distributed.checkpoint()
支持并行从多个进程保存和加载模型。您可以使用该模块在任意数量的进程中进行并行保存,然后在加载时重新划分到不同的集群拓扑中。
此外,通过使用 torch.distributed.checkpoint.state_dict()
模块,DCP支持在分布式环境中优雅地处理 state_dict 的生成和加载。这包括管理跨模型和优化器的完全限定名称(FQN)映射,并设置PyTorch提供的并行默认参数。
DCP与 torch.save()
和 torch.load()
在以下几个重要方面不同:
它对每个检查点生成多个文件,至少每个进程一个。
它在原地操作,意味着模型首先需要分配数据,然后DCP使用该存储空间。
DCP对状态对象提供特殊处理(在 torch.distributed.checkpoint.stateful 中正式定义),如果定义了 state_dict 和 load_state_dict 方法,会自动调用它们。
备注
本教程中的代码运行在一个8-GPU服务器上,但可以轻松推广到其他环境。
如何使用DCP¶
在这里我们使用一个封装了FSDP的玩具模型进行演示。类似地,这些API和逻辑可以应用于更大的模型检查点。
保存¶
现在,让我们创建一个玩具模块,用FSDP封装它,用一些虚拟输入数据来喂养它并保存它。
import os
import torch
import torch.distributed as dist
import torch.distributed.checkpoint as dcp
import torch.multiprocessing as mp
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.checkpoint.state_dict import get_state_dict, set_state_dict
from torch.distributed.checkpoint.stateful import Stateful
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
CHECKPOINT_DIR = "checkpoint"
class AppState(Stateful):
"""This is a useful wrapper for checkpointing the Application State. Since this object is compliant
with the Stateful protocol, DCP will automatically call state_dict/load_stat_dict as needed in the
dcp.save/load APIs.
Note: We take advantage of this wrapper to hande calling distributed state dict methods on the model
and optimizer.
"""
def __init__(self, model, optimizer=None):
self.model = model
self.optimizer = optimizer
def state_dict(self):
# this line automatically manages FSDP FQN's, as well as sets the default state dict type to FSDP.SHARDED_STATE_DICT
model_state_dict, optimizer_state_dict = get_state_dict(self.model, self.optimizer)
return {
"model": model_state_dict,
"optim": optimizer_state_dict
}
def load_state_dict(self, state_dict):
# sets our state dicts on the model and optimizer, now that we've loaded
set_state_dict(
self.model,
self.optimizer,
model_state_dict=state_dict["model"],
optim_state_dict=state_dict["optim"]
)
class ToyModel(nn.Module):
def __init__(self):
super(ToyModel, self).__init__()
self.net1 = nn.Linear(16, 16)
self.relu = nn.ReLU()
self.net2 = nn.Linear(16, 8)
def forward(self, x):
return self.net2(self.relu(self.net1(x)))
def setup(rank, world_size):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12355 "
# initialize the process group
dist.init_process_group("nccl", rank=rank, world_size=world_size)
torch.cuda.set_device(rank)
def cleanup():
dist.destroy_process_group()
def run_fsdp_checkpoint_save_example(rank, world_size):
print(f"Running basic FSDP checkpoint saving example on rank {rank}.")
setup(rank, world_size)
# create a model and move it to GPU with id rank
model = ToyModel().to(rank)
model = FSDP(model)
loss_fn = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
optimizer.zero_grad()
model(torch.rand(8, 16, device="cuda")).sum().backward()
optimizer.step()
state_dict = { "app": AppState(model, optimizer) }
dcp.save(state_dict, checkpoint_id=CHECKPOINT_DIR)
cleanup()
if __name__ == "__main__":
world_size = torch.cuda.device_count()
print(f"Running fsdp checkpoint example on {world_size} devices.")
mp.spawn(
run_fsdp_checkpoint_save_example,
args=(world_size,),
nprocs=world_size,
join=True,
)
请继续检查 checkpoint 目录。您应该会看到如下所示的8个检查点文件。
加载¶
保存后,我们创建一个相同的FSDP封装模型,并从存储中加载保存的状态字典到模型中。您可以在相同的世界大小或不同的世界大小加载数据。
请注意,您需要在加载之前调用 model.state_dict()
并将其传递给DCP的 load_state_dict()
API。这与 torch.load()
基本不同,因为 torch.load()
仅要求加载之前提供检查点的路径。我们需要在加载之前的 state_dict 的原因是:
DCP使用模型状态字典中预分配的存储加载检查点目录数据。在加载期间,传入的状态字典将被原位更新。
DCP需要模型的分片信息支持加载时的重新分片。
import os
import torch
import torch.distributed as dist
import torch.distributed.checkpoint as dcp
from torch.distributed.checkpoint.stateful import Stateful
from torch.distributed.checkpoint.state_dict import get_state_dict, set_state_dict
import torch.multiprocessing as mp
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
CHECKPOINT_DIR = "checkpoint"
class AppState(Stateful):
"""This is a useful wrapper for checkpointing the Application State. Since this object is compliant
with the Stateful protocol, DCP will automatically call state_dict/load_stat_dict as needed in the
dcp.save/load APIs.
Note: We take advantage of this wrapper to hande calling distributed state dict methods on the model
and optimizer.
"""
def __init__(self, model, optimizer=None):
self.model = model
self.optimizer = optimizer
def state_dict(self):
# this line automatically manages FSDP FQN's, as well as sets the default state dict type to FSDP.SHARDED_STATE_DICT
model_state_dict, optimizer_state_dict = get_state_dict(self.model, self.optimizer)
return {
"model": model_state_dict,
"optim": optimizer_state_dict
}
def load_state_dict(self, state_dict):
# sets our state dicts on the model and optimizer, now that we've loaded
set_state_dict(
self.model,
self.optimizer,
model_state_dict=state_dict["model"],
optim_state_dict=state_dict["optim"]
)
class ToyModel(nn.Module):
def __init__(self):
super(ToyModel, self).__init__()
self.net1 = nn.Linear(16, 16)
self.relu = nn.ReLU()
self.net2 = nn.Linear(16, 8)
def forward(self, x):
return self.net2(self.relu(self.net1(x)))
def setup(rank, world_size):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12355 "
# initialize the process group
dist.init_process_group("nccl", rank=rank, world_size=world_size)
torch.cuda.set_device(rank)
def cleanup():
dist.destroy_process_group()
def run_fsdp_checkpoint_load_example(rank, world_size):
print(f"Running basic FSDP checkpoint loading example on rank {rank}.")
setup(rank, world_size)
# create a model and move it to GPU with id rank
model = ToyModel().to(rank)
model = FSDP(model)
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
state_dict = { "app": AppState(model, optimizer)}
dcp.load(
state_dict=state_dict,
checkpoint_id=CHECKPOINT_DIR,
)
cleanup()
if __name__ == "__main__":
world_size = torch.cuda.device_count()
print(f"Running fsdp checkpoint example on {world_size} devices.")
mp.spawn(
run_fsdp_checkpoint_load_example,
args=(world_size,),
nprocs=world_size,
join=True,
)
如果您想在非分布式设置中将已保存的检查点加载到非FSDP封装模型中,可能用于推理,您也可以使用DCP。默认情况下,DCP以单程序多数据(SPMD)风格保存和加载分布式 state_dict。但是如果未初始化任何进程组,则DCP会推断出意图是在”非分布式”风格中进行保存或加载,即完全在当前进程内。
备注
对多程序多数据格式的分布式检查点支持仍在开发中。
import os
import torch
import torch.distributed.checkpoint as dcp
import torch.nn as nn
CHECKPOINT_DIR = "checkpoint"
class ToyModel(nn.Module):
def __init__(self):
super(ToyModel, self).__init__()
self.net1 = nn.Linear(16, 16)
self.relu = nn.ReLU()
self.net2 = nn.Linear(16, 8)
def forward(self, x):
return self.net2(self.relu(self.net1(x)))
def run_checkpoint_load_example():
# create the non FSDP-wrapped toy model
model = ToyModel()
state_dict = {
"model": model.state_dict(),
}
# since no progress group is initialized, DCP will disable any collectives.
dcp.load(
state_dict=state_dict,
checkpoint_id=CHECKPOINT_DIR,
)
model.load_state_dict(state_dict["model"])
if __name__ == "__main__":
print(f"Running basic DCP checkpoint loading example.")
run_checkpoint_load_example()
格式¶
尚未提到的一个缺点是,DCP以与使用torch.save生成的检查点格式本质上不同的格式保存检查点。当用户希望与习惯torch.save格式的其他用户分享模型时,或者在一般情况下想为应用增加格式灵活性时,这可能会成为一个问题。对于这种情况,我们提供了 torch.distributed.checkpoint.format_utils 中的 format_utils 模块。
提供了一个命令行工具供用户使用,其格式如下:
python -m torch.distributed.checkpoint.format_utils <mode> <checkpoint location> <location to write formats to>
在上述命令中,mode 是 torch_to_dcp 或 dcp_to_torch 之一。
或者,对于希望直接转换检查点的用户,也提供了相应的方法。
import os
import torch
import torch.distributed.checkpoint as DCP
from torch.distributed.checkpoint.format_utils import dcp_to_torch_save, torch_save_to_dcp
CHECKPOINT_DIR = "checkpoint"
TORCH_SAVE_CHECKPOINT_DIR = "torch_save_checkpoint.pth"
# convert dcp model to torch.save (assumes checkpoint was generated as above)
dcp_to_torch_save(CHECKPOINT_DIR, TORCH_SAVE_CHECKPOINT_DIR)
# converts the torch.save model back to DCP
torch_save_to_dcp(TORCH_SAVE_CHECKPOINT_DIR, f"{CHECKPOINT_DIR}_new")
结论¶
总之,我们学习了如何使用DCP的 save 和 load API,以及它们与 torch.save 和 torch.load 的不同。此外,我们还学习了如何使用 get_state_dict 和 set_state_dict 在状态字典生成和加载期间自动管理特定于并行的FQN和默认值。
欲了解更多信息,请参见以下内容: